
CS103 Handout 17

Summer 2019 July 10, 2019

Discrete Structures Proofwriting Checklist

Now that we’re transitioning to writing proofs about discrete structures like binary relations, func-
tions, and graphs, there are a few specific points we’d like to you to check for in your proofs in
addition to the general rules set out in the earlier Proofwriting Checklist.

As you’re working through the problems on Problem Set Three and beyond, take a few minutes
per proof to read over what you’ve written and check to make sure that your proofs obey the fol-
lowing criteria:

 ☐ Appropriately call back to first-order definitions.

 ☐ Don’t use quantifiers or connectives in your proofs.

 ☐ Don’t repeat definitions; use them instead.

☐ Type-check your proofs.

As before, we will be applying this checklist to the proofs that you submit as part of how we
grade, so catching these sorts of issues before you submit will help us give you even better tar-
geted feedback on your proofs.

The remainder of this handout goes into more detail about what each of these rules mean.

2 / 7

Appropriately Call Back to First-Order Definitions
One of the main differences between the proofs that you’ll be writing on Problem Set Three and the
proofs you did on Problem Set One and Problem Set Two is that we now have symbolic definitions of
key terms and definitions expressed in the language of first-order logic. From a proofwriting perspec-
tive, this is quite useful – it means that you know exactly what it is that you’ll need to prove at each
point in time. At the same time, this means that you need to be extremely careful when setting up your
proofs to make sure that you’re making the right assumptions and ultimately trying to prove the right
results.

For example, let’s suppose that you’re trying to prove that some binary relation R over a set A is transi-
tive. This means that you need to prove that

∀x ∈ A. ∀y ∈ A. ∀z ∈ A. (xRy ∧ yRz → xRz).

Given that this is the statement you want to prove, you should not start your proof off like this:

⚠ Incorrect! ⚠ Proof: Consider any x, y ∈ A where xRy. Since xRy, we know that […] ■

The issue with this proof is that the structure of what’s written above doesn’t match the structure of the
first-order statement in question. Specifically, since in this proof we’ve picked an arbitrary x and y from
A and assumed that xRy, we’re essentially writing a proof that matches the following first-order logic
fragment:

∀x ∈ A. ∀y ∈ A. (xRy → […])

Take a minute to confirm that you see exactly why this is the case.

As you’re working through problems on discrete structures, we strongly recommend that, before you
spend any mental energy trying to actually tackle the problem, you make sure that you have clearly
identified what it is that you’re assuming and what it is that you need to prove. The Guide to Proofs on
Discrete Structures contains a number of example proof templates that you can use for some common
cases, but more generally you’ll want to get as much practice as possible going back and forth between
first-order logic and proof setup.

There’s another way that we often see proofs fail to engage with first-order definitions, and that’s to
operate at far too high of a level. As an example, if you look on Problem Set Three, you’ll see this bi-
nary relation. Here, the relations ⊏i are all strict orders representing peoples’ preferences:

xUy if x ⊏i y for each person i.

You’re asked to prove that U is always a strict order. Here’s a purported proof of this:

⚠ Incorrect! ⚠ Proof: The U relation is defined in terms of the ⊏i relations. Since the ⊏i relations are
strict order and U is defined in terms of ⊏i, we can see that U itself must be a strict order, as required. ■

This proof doesn’t establish that U is irreflexive and transitive, and instead relies on a high-level appeal
to intuition that if you start with a strict order and hit it with the Math Hammer to form a new strict or -
der, you are guaranteed to end up with a strict order. The problem here is that this argument essentially
takes a much narrower statement (“U is a strict order”), which we aren’t sure is true, and tries to prove
it by appealing to a much broader statement (“any binary relation that can be made out of a strict order
must itself be a strict order.”) The catch here is that we haven’t proved that broader statement any-
where, and in fact, since it’s such a broad statement, we should be even more skeptical of it than we are
of the claim that the single relation U is a strict order.

3 / 7

In fact, you can show that the statement given above isn’t true. Let’s consider this binary relation R
over the set :ℤ

xRy if x < y ∨ x ≮ y.

This is a relation that’s defined in terms of a strict order (the less-than relation over), but it’s not aℤ
strict order. Specifically, it’s neither asymmetric (notice that 137R42 and 42R137) nor irreflexive (since
137R137).

There are two lessons to take away from this example. First, be wary about going off-script in the
course of writing a proof. If you’re asked to prove that something is a strict order, or an equivalence re-
lation, or a bijection, etc., you have a formal definition you can call back to, and chances are that it’s
probably best to prove that the object has the given type by explicitly appealing to each of the parts of
this definition. If you decide not to do that and to prove the result through some other mechanism, you
should be very suspicious about the line of reasoning you’re following.

This brings us to the second lesson here – exercise skepticism about broad claims in your proofs. If
you’re making some claim about how all equivalence relations behave, or what every graph looks like,
etc., your immediate response should be to ask whether what you’re saying is actually true. If so, why?
Go and prove it. If not, why not? Go disprove it. In the course of doing so, you’ll either discover a flaw
in your original line of reasoning, which is great (it means that you’ve spotted an error in your proof
and can go and try to address it), or you’ll end up with a more robust proof because you’ll have justi-
fied a critical and non-obvious claim you’ve made.

4 / 7

Don’t Use Quantifiers or Connectives in Your Proofs
The title of this section says it all – the convention in proofwriting is to not use quantifiers (∀ or) or∃
connectives (, , →, etc.) in the course of writing up a mathematical proof. There’s no fundamental∧ ∨
reason why proofs couldn’t be written using these symbols. It’s just the way that the mathematical
community decided to do things. Since part of the goal of this class is to get you to write proofs in way
that matches established guidelines, we’ll be enforcing this rule pretty strictly.

The good news is that many violations of this rule are quite easy to fix. For example, suppose that
we’re trying to prove that some function f : A → B is surjective. Here’s one possible not-so-great way
to start off a proof to that effect:

 ⚠ Incorrect! ⚠ Proof: We will prove that the function f is surjective. To do so, we need to prove that
∀b ∈ B. ∃a ∈ A. f(a) = b. So consider an arbitrary b ∈ B. We will prove that there is some a ∈ A where
f(a) = b. […] ■

Here, the first-order logic notation that’s present in the proof is just a restatement of the formal defini-
tion of surjectivity, and from context it looks like the author of the proof may have included it to make
clear that they know what the definition of surjectivity is and to remind the author of that definition.

As you saw in the original Proofwriting Checklist, it’s almost never a good idea to restate definitions in
the abstract (“Don’t restate definitions; use them instead”). You can assume that whoever is reading
your proof knows what a surjective function is, so restating the definition of a surjective function
doesn’t actually accomplish anything here. We can safely delete that entire sentence from the proof,
leaving us with this much simpler proof setup:

Proof: We will prove that the function f is surjective. To do so, consider an arbitrary b ∈ B. We will
prove that there is some a ∈ A where f(a) = b. […] ■

This proof contains all of the important details of the original proof, but without any quantifiers or con-
nectives.

Another common case where we see people using first-order logic in proofs is in the context of work-
ing with discrete structures (often, binary relations) that are themselves defined in first-order logic.
Stealing an example from the Guide to Proofs on Discrete Structures, let’s suppose that you have the
following binary relation R defined over the set :ℤ

xRy if ∃k ∈ ℕ. (k ≠ 0 ∧ x + k = y).

Imagine that you want to prove that R is transitive. Here’s a not-so-great way to do this:

 ⚠ Incorrect! ⚠ Proof: Consider any x, y, z ∈ ℤ where xRy and yRz. We need to prove that xRz.

Since xRy, we know that ∃k ∈ ℕ. (k ≠ 0 ∧ x + k = y). Similarly, since yRz, we know that ∃r ∈ ℕ. (r ≠
0 ∧ y + r = z). Since x + k = y and y + r = z, we see that

 x + k + r = y + r = z. (1)

Additionally, since k and r are natural numbers where k ≠ 0 and r ≠ 0, we know that k > 0 and that r >
0, and so k + r > 0. Therefore, k + r ≠ 0. Consequently, we see that ∃s ∈ ℕ. (s ≠ 0 ∧ x + s = z), since
we can pick s = k + r. Therefore, xRz, as required. ■

5 / 7

The logic of the above proof is entirely correct, and so conceptually there’s nothing wrong with the
proof. The issue here is that this just isn’t the way that you’re supposed to write proofs about defini-
tions given in first-order logic. Instead of using the formal first-order logic notation, the convention is
to render the equivalents of these statements in plain English. Here’s a better way to write up the above
proof:

Proof: Consider any x, y, z ∈ ℤ where xRy and yRz. We need to prove that xRz.

Since xRy, we know that there is a nonzero natural number k where x + y = k. Similarly, since yRz, we
know that there is a nonzero natural number r where y + r = z. Since x + k = y and y + r = z, we see that

 x + k + r = y + r = z. (1)

Additionally, since k and r are natural numbers where k ≠ 0 and r ≠ 0, we know that k > 0 and that r >
0, and so k + r > 0. Therefore, k + r ≠ 0. Consequently, we see that there is a natural number s (namely,
k+r) such that s ≠ 0 and x + s = z. Therefore, xRz, as required. ■

All we’ve done here is replace denser first-order logic notation with plain English. The reasoning here
is completely the same.

6 / 7

Don’t Repeat Definitions; Use Them Instead
“Hey!,” you’re probably saying. “Isn’t this something covered in the original Proofwriting Checklist?”
Yes. Yes it is. As we transition to proofs on discrete structures, this rule will become even more rele-
vant, and so we thought it was worth revisiting.

On Problem Set One and Problem Set Two, we gave you the advice to avoid restating definitions
purely in the abstract and to instead use them in a way that demonstrates how that definition is applied.
For example, we recommended replacing statements like the ones on the left with one like what’s on
the right:

We know that x ∈ A. Since A ⊆ B, we know
that every element of A is an element of B.
Thus we see that x ∈ B.

We know that x ∈ A. Since A ⊆ B, we know
that every x ∈ A satisfies x ∈ B. Therefore, we
see that x ∈ B.

Since x ∈ A and A ⊆ B, we see that x ∈ B.

We know that x ∈ A. Since A ⊆ B, we know
that every z ∈ A satisfies z ∈ B. Therefore, we
see that x ∈ B.

There are a few reasons why it’s wise to avoid repeating definitions in the abstract. First, you can as -
sume that the reader knows all of the relevant terms and definitions that are needed in your proofs.
Your job as a proofwriter is not to convince the reader of what the definitions are, but to show how
those definitions interact with one another to build into some result. In that sense, repeating a definition
in the abstract, like what’s done above and to the left, doesn’t actually contribute anything to the argu-
ment you’re laying out. The reader already knows the definition, so that sentence is fully redundant.

Second, restating definitions in the abstract risks violating other checklist items. Let’s go one at a time
through the three options on the left that we advise against. The first one is far too general (“every ele-
ment of A is an element of B”) and therefore breaks our advice of making specific claims about specific
variables. The second one (“every x ∈ A satisfies x ∈ B”) is a variable scoping error – is x the specific
value referred to in the first sentence, or is it a placeholder? The third one is making specific claims
about the variable z and doesn’t have a scoping error, but in that case z is purely a placeholder – it
doesn’t refer to any value. In each of those cases, you can safely delete things.

And finally, restating definitions in the abstract just makes things longer. Compare the three options to
the left to the one on the right. All three of those proof fragments are significantly longer than the more
concise and direct version shown to the right.

7 / 7

Type-Check Your Proofs
Type checking has been a recurring theme in this class – you’ve seen this in the set theory translations
from Problem Set One and the first-order logic translations from Problem Set Two – and that trend con-
tinues forward as you’re talking about discrete structures. With the introduction of new terminology
from discrete structures, there are more opportunities to make type errors, and so we thought we’d
quickly survey some of the common mistakes.

Let’s imagine that R is a binary relation over a set A and that x and y are elements of A. There is a dis-
tinction between the binary relation R (which you can think of as a sort of predicate) and the statement
xRy, which says that x is related to y via the relation R. In other words:

R is of type “binary relation” xRy is of type “proposition”

Certain adjectives can only be used to describe binary relations, not propositions. For example, only a
binary relation can be reflexive, so it makes sense to say something like “R is reflexive” or “R is not re-
flexive” because R has type “binary relation.” However, it is not correct to say something like “xRx is
reflexive” or “xRx is not reflexive,” since xRx has type “proposition” and propositions cannot be reflex-
ive or irreflexive. Similarly, if x ∈ A and R is a binary relation over a set A, it would not be correct to
say “x is reflexive” in place of writing out xRx, since x itself can’t be reflexive (unless, of course, A
happens to be a set of binary relations, and R is a relation on top of other relations!)

Similarly, let’s imagine that f : A → B is a function and that x is an element of A. There’s similarly a
difference between the function f (a general transformation that can be applied to elements of A) and the
object f(x), which is a specific object contained in the set B. In other words:

f is of type “function” f(x) is of type “element of B”

This means, for example, that you could say something like “f is injective” or “f is a bijection,” but you
probably shouldn’t write something like “f(x) is injective” or “f(x) is a bijection,” since f(x) refers
specifically to what you get when you plug x into f. As a note, in practice, mathematicians tend to
sometimes be a lot looser with the distinction between f and f(x) and often use one in place of the other,
though for the purposes of CS103 we’ll expect you to keep the notation distinct to convince us that you
understand why they don’t represent the same thing.

Both binary relations and functions operate on elements that are drawn from some particular set (the
underlying set for a binary relation; the domain for a function). If R is a binary relation over a set A,
then you should be careful not to write something like xRy unless you’re sure that x and y are elements
of the set A. After all, the whole point of having binary relations operate on a specific set is so that we
don’t have to worry about cases like ★ ⊆△, and the reason we define domains for our functions is so
that we don’t end up evaluating expressions like n3 – 4n2 on inputs like ★.

	Appropriately Call Back to First-Order Definitions
	Don’t Use Quantifiers or Connectives in Your Proofs
	Don’t Repeat Definitions; Use Them Instead
	Type-Check Your Proofs

